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I. Overview

Southern California Gas Company’s service area extends from Fresno County to
the Mexican border.  To quantify the overall temperature experienced within this region, 
SoCalGas aggregates daily temperature recordings from fifteen U.S. Weather Bureau 
weather stations first into six temperature zones and then into one system average heating 
degree-day (“HDD”) figure.  The table below lists weather station locations by 
temperature zones. 

Table 1 
Weather Stations by Temperature Zones and Weights 

Temperature Zone Weight Station (After 10/31/2002) Station (Before 11/1/2002) 

1. High mountain 0.0058 Big Bear Lake Lake Arrowhead 

2. Low desert 0.0391 Palm Springs 

El Centro 

Palm Springs 

Brawley 

3. Coastal 0.1831 Los Angeles Airport 

Newport Beach 

Santa Barbara Airport 

Los Angeles Airport 

Newport Beach Harbor 

Santa Barbara Airport 

4. High desert 0.0744 Bakersfield 

Lancaster Airport 

Fresno 

Bakersfield Airport 

Palmdale 

Visalia 

5. Interior valleys 0.3865 Burbank 

Pasadena 

Ontario 

Rialto 

Burbank 

Pasadena 

Pomona Cal Poly 

Redlands 

6. Basin 0.3112 Los Angeles Civic Center 

Santa Ana 

Los Angeles Civic Center/ 
Downtown-USC 

Santa Ana 
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SoCalGas uses 65° Fahrenheit to calculate the number of HDDs.  One heating 
degree day is accumulated for each degree that the daily average is below 65° Fahrenheit. 
To arrive at the HDD figure for each temperature zone, SoCalGas uses the simple 
average of the weather station HDDs in that temperature zone.  To arrive at the system 
average HDDs figure for its entire service area, SoCalGas weights the HDD figure for 
each zone using the proportion of gas customers within each temperature zone based on 
year 2024 customer counts.  These weights have been used in calculating the data shown 
from January 2005 to December 2024. 

Daily weather temperatures are from the National Climatic Data Center or from 
preliminary data that SoCalGas captures each day for various individual weather stations 
as well as for its system average values of HDD. Annual and monthly HDDs for the 
entire service area from 2005 to 2024 are listed in Table 2, below. 

 
Table 2 

Calendar Month Heating Degree-Days (Jan. 2005 through Dec. 2024) 
 

 
Month 

           
Total 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec "Cal-
Year" 

2005 288 209 177 116 35 10 4 1 9 43 99 234 1225 
2006 273 200 338 163 28 3 0 1 5 36 105 279 1432 
2007 348 216 126 116 49 16 1 1 12 36 126 355 1402 
2008 347 263 148 124 76 8 1 0 2 24 75 334 1402 
2009 197 259 195 135 18 15 3 4 1 44 118 321 1310 
2010 254 222 174 163 72 14 8 9 13 42 203 271 1446 
2011 252 307 213 105 80 27 2 4 6 39 207 350 1591 
2012 223 237 223 118 38 11 6 1 1 16 111 301 1286 
2013 330 264 125 66 16 4 1 2 2 44 104 257 1216 
2014 142 148 90 76 19 4 0 1 1 5 66 224 776 
2015 182 94 64 67 69 4 1 0 1 4 163 318 967 
2016 282 112 113 54 45 7 1 1 3 14 111 270 1014 
2017 321 208 100 44 50 6 1 0 4 12 51 176 972 
2018 155 211 181 70 56 6 0 0 1 10 79 248 1020 
2019 263 349 165 53 76 9 2 1 3 23 125 265 1336 
2020 242 175 205 108 11 3 2 2 1 10 149 238 1146 
2021 259 180 232 76 37 7 0 1 9 41 74 338 1254 
2022 240 204 136 74 40 3 1 0 3 13 191 303 1209 
2023 341 313 298 125 76 20 2 0 2 14 85 174 1451 
2024 269 253 211 126 50 8 3 0 4 19 159 231 1333 

                            
20-Yr-Avg (Jan 2005-Dec 2024)           
Avg. 260.5 221.3 175.7 98.9 47.1 9.3 1.9 1.4 4.2 24.6 120.0 274.4 1239.4 

St.Dev. 60.4 63.7 67.9 35.7 22.3 6.2 2.0 2.1 3.8 14.5 45.6 53.2 204.6 
Min. 141.8 94.2 63.8 43.8 11.0 3.2 0.1 0.1 0.7 4.3 50.6 173.8 776.3 
Max. 348.3 349.5 338.0 162.7 80.2 26.5 8.4 9.3 13.4 44.5 206.7 354.6 1590.6 
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II. Calculations to Define Our Average-Temperature Year 

The simple average of the 20-year period (January 2005 through December 2024) 
was used to represent the Average Year total and the individual monthly values for HDD. 
In this Cost Allocation Proceeding (CAP), the standard deviation has been calculated 
using an approach that compensates for the annual HDD values for the years 2014-2018 
in SoCalGas’ service territory being dramatically lower than in any preceding year going 
back to 19501. A regression with a time trend and a dummy variable for the years 2014-
2018 has been used to estimate a shift in the level of annual HDD that occurred beginning 
in 2014. A dummy variable takes the value one for some observations to indicate the 
presence of an effect or membership in a group and zero for the remaining observations. 
Estimating the effect of the dummy variable gives an estimate of that effect or the impact 
of membership in that group. A dummy variable is used here to estimate the average 
effect on annual HDD of a given year having membership in the group of years 2014-
2018. The dataset is SoCalGas system-wide annual HDD for the years 2005-2024. The 
regression equation is: 

𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽 ∗ 𝑡𝑡 + 𝛽𝛽2014−2018 ∗ 𝐷𝐷2014−2018 + 𝜀𝜀 

where 𝐷𝐷2014−2018 is a dummy variable for the years 2014-2018 and 𝛽𝛽2014−2018is the 
corresponding dummy coefficient. This regression equation estimates average HDD over 
the period 2005-2024 controlling for time trends in HDD and the warm weather regime 
of years 2014-2018. It’s important to note that p-value for the estimate of 𝛽𝛽2014−2018 is 
about than 0.001%, indicating an extremely low probability that membership in the group 
of years 2014-2018 had no effect on annual HDDs. Please see table 3 below for the full 
regression output. 
  

1 The same approach to control warm weather regime from 2014 to 2018 when estimating standard 
deviation was used in last CAP 2024. 

4Chapter 2: Weather Design



Table 3 
Dummy Regression for Calculation of Heating Degree-Day Standard Deviation 

 
 

The dummy variable’s estimated effect, 𝛽𝛽2014−2018, is subtracted from the actual 
annual HDD data for years 2014-2018 to adjust the data to remove the level shift. The 
standard deviation has been calculated using this adjusted dataset. This standard deviation 
has been used to design the two Cold Years based on a “1-in-10” and “1-in-35” chance, c, 
that the respective annual “Cold Year” hddc value would be exceeded. 

A probability model for the annual HDD is based on a t-Distribution with N-1 
degrees of freedom, where N is the number of years of HDD data we use, µ is the 
average of the last 20 years of HDD, and S20 is the average of the standard deviations of 
the 20 most recent 20-year periods: 

    U = (HDDy - µ)/S20, has a t-Distribution with N-1 degrees of freedom. 
 
 
III. Calculating the Cold-Temperature Year Weather Designs 
 

Cold Year HDD Weather Designs 
For SoCalGas, cold-temperature-year HDD weather designs are developed with a 

1-in-35 annual chance of occurrence.  In terms of probabilities this can be expressed as 
the following for a “1-in-35” cold-year HDD value in equation 1 and a “1-in-10” cold-
year HDD value in equation 2, with Annual HDD as the random variable: 

 

(1) Prob { Annual HDD > “1-in-35” Cold-Yr HDD } = 1/35 = 0.0286 
 

(2) Prob { Annual HDD > “1-in-10” Cold-Yr HDD } = 1/10 = 0.1000 
 

Regression Statistics
Multiple R 0.84669176
R Square 0.716886937
Adjusted R Square 0.683579518
Standard Error 115.1066196
Observations 20

ANOVA
df SS MS F Significance F

Regression 2 570348.4679 285174.2339 21.52334087 2.19614E-05
Residual 17 225242.0759 13249.53388
Total 19 795590.5438

Coefficients Standard Error t Stat P-value
Intercept 1377.758303 54.0526788 25.4891771 5.50506E-15
Time -4.182938582 4.514853073 -0.926483878 0.367161601
Regime Dummy -377.7171654 60.12274634 -6.282433661 8.26324E-06
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An area of 0.0286 under one tail of the T-Distribution translates to 2.025 standard 
deviations above an average-year based on a t-statistic with 19 degrees of freedom.  
Using the standard deviation calculated as described earlier, which is 111.7 HDD, these 
equations yield values of about 1,465 HDD for a “1-in-35” cold year and 1,387 HDDs for 
a “1-in-10” cold year. (An area of 0.1000 under one tail of the T-Distribution translates to 
1.328 standard deviations above an average-year based on a t-statistic with 19 degrees of 
freedom.)  For example, the “1-in-35” cold-year HDD is calculated as follows: 

 

(3) Cold-year HDD = 1,465, which equals approximately  
      1,239 average-year HDDs + 2.025 * 111.7 

 

Table 4 shows monthly HDD figures for “1-in-35” cold year, “1-in-10” cold year 
and, average year temperature designs.  The monthly average-temperature-year HDDs are 
calculated from weighted monthly HDDs from 2005 to 2024, as shown as the bottom of 
Table 2, above.  For example, the average-year December value of 274.3 HDD equals the 
simple average of the twenty December HDD figures from 2005 to 2024. SoCalGas 
calculates the cold--temperature-year monthly HDD values using the same distribution of 
average-year HDDs.  For example, 22.14 percent (274.3 / 1239) of average-temperature-
year HDDs occurred in December, so the estimated number of HDDs during December 
for a 1-in-35 cold-year is equal to 1,465 HDDs multiplied by 22.1 percent, or 324.3 
HDDs. 
 

Table 4 
Calendar Month Heating Degree-Day Designs 

 Cold Average Hot 

 
1-in-35 
Design 

1-in-10 
Design  

1-in-10 
Design 

1-in-35 
Design 

January 307.9 291.5 260.4 229.3 212.9 
February 261.6 247.7 221.2 194.8 180.9 
March 207.6 196.6 175.6 154.6 143.6 
April 116.9 110.7 98.9 87.0 80.8 
May 55.7 52.8 47.1 41.5 38.5 
June 11.1 10.5 9.3 8.2 7.6 
July 2.2 2.1 1.9 1.7 1.6 
August 1.7 1.6 1.4 1.2 1.2 
September 5.0 4.7 4.2 3.7 3.5 
October 29.1 27.6 24.6 21.7 20.1 
November 141.9 134.3 120.0 105.7 98.1 
December 324.3 307.0 274.3 241.5 224.2 
 1465 1387 1239 1091 1013 
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IV. Adjusting Forecasted HDDs for a Climate-Change Trend 
 

SoCalGas incorporates a climate-change warming trend that reduces HDDs by 7 
HDDs per year over the forecast period. The annual reduction is based on the latest 
twenty-year trend in 20-year-averaged HDDs. That is, they are based on the observed 
trend in changes starting with average HDDs for years 1986-2005, then 1987-2006, 1988-
2007...and ending with the average HDDs for years 2005-2024. 

 
 Table 5 below shows system HDDs, rolling 20-year-averaged HDDs, and the 

annual changes in those rolling 20-year averages.  The actual average annual change is -
7.3 HDDs for the most recent twenty of the 20-year averages (with ending years from 
2005 through 2024).  A simple “ordinary least squares” regression-fitted time trend 
(using Microsoft Excel’s “LINEST” function) was applied to those same annual changes, 
resulting in a fitted estimation of -8.9 HDDs per year.  Based on the fitted trend, it was 
decided to decrease average-year and cold-year forecasted HDDs by 7 HDDs per year, 
starting with the first forecast year of 2025. 
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Table 5 
             Average Annual Changes in 20-Year Averaged Heating-Degree Days 

   

Average Annual Changes in 20-Year-Averaged HDDs
Regression 
Fitted trend Actual

20 Year: (2005-2024) -8.9 -7.3

Year
SCG System 

HDDs

20-year 
averaged 

HDDs

Annual change 
in 20-year 

averaged HDDs

1985 1589
1986 1094
1987 1504
1988 1372
1989 1361
1990 1446
1991 1407
1992 1256
1993 1213
1994 1469
1995 1246
1996 1189
1997 1158
1998 1569
1999 1538
2000 1369
2001 1690
2002 1499
2003 1339
2004 1392 1385.0
2005 1225 1366.8 -18.2
2006 1432 1383.8 16.9
2007 1402 1378.6 -5.1
2008 1402 1380.2 1.5
2009 1310 1377.6 -2.6
2010 1446 1377.6 0.0
2011 1591 1386.7 9.2
2012 1286 1388.3 1.5
2013 1216 1388.4 0.1
2014 776 1353.7 -34.6
2015 967 1339.8 -14.0
2016 1014 1331.0 -8.7
2017 972 1321.8 -9.3
2018 1020 1294.3 -27.5
2019 1336 1284.2 -10.1
2020 1146 1273.1 -11.1
2021 1254 1251.3 -21.8
2022 1209 1236.8 -14.5
2023 1451 1242.4 5.6
2024 1333 1239.4 -2.9
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Below tables 6.1 – 6.3 show the complete monthly weather design: 
Table 6.1 

Calendar Month Heating Degree-Day Designs with Climate-Change Trend 

  Cold   Average Hot   

  
1-in-35 
Design 

1-in-10 
Design   1-in-10 

Design 
1-in-35 
Design 

Jan-2025 306.4 290.0 258.9 227.8 211.4 
Feb-2025 260.3 246.4 220.0 193.6 179.6 
Mar-2025 206.7 195.6 174.6 153.6 142.6 
Apr-2025 116.3 110.1 98.3 86.5 80.3 
May-2025 55.5 52.5 46.9 41.2 38.3 
Jun-2025 11.0 10.4 9.3 8.2 7.6 
Jul-2025 2.2 2.1 1.9 1.7 1.5 

Aug-2025 1.7 1.6 1.4 1.2 1.1 
Sep-2025 5.0 4.7 4.2 3.7 3.4 
Oct-2025 29.0 27.4 24.5 21.6 20.0 
Nov-2025 141.2 133.7 119.3 105.0 97.4 
Dec-2025 322.7 305.5 272.7 240.0 222.7 
Jan-2026 304.9 288.6 257.4 226.3 210.0 
Feb-2026 259.1 245.2 218.7 192.3 178.4 
Mar-2026 205.7 194.6 173.6 152.6 141.6 
Apr-2026 115.8 109.5 97.7 85.9 79.7 
May-2026 55.2 52.2 46.6 41.0 38.0 
Jun-2026 10.9 10.4 9.2 8.1 7.5 
Jul-2026 2.2 2.1 1.9 1.7 1.5 

Aug-2026 1.7 1.6 1.4 1.2 1.1 
Sep-2026 5.0 4.7 4.2 3.7 3.4 
Oct-2026 28.8 27.3 24.4 21.4 19.9 
Nov-2026 140.5 133.0 118.6 104.3 96.8 
Dec-2026 321.2 303.9 271.2 238.4 221.1 
Jan-2027 303.5 287.1 256.0 224.9 208.5 
Feb-2027 257.8 243.9 217.5 191.1 177.1 
Mar-2027 204.7 193.6 172.6 151.7 140.6 
Apr-2027 115.2 109.0 97.2 85.4 79.1 
May-2027 54.9 52.0 46.3 40.7 37.7 
Jun-2027 10.9 10.3 9.2 8.1 7.5 
Jul-2027 2.2 2.1 1.9 1.6 1.5 

Aug-2027 1.6 1.6 1.4 1.2 1.1 
Sep-2027 4.9 4.7 4.2 3.7 3.4 
Oct-2027 28.7 27.2 24.2 21.3 19.7 
Nov-2027 139.8 132.3 118.0 103.6 96.1 
Dec-2027 319.6 302.4 269.6 236.9 219.6 
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Table 6.2 
Calendar Month Heating Degree-Day Designs with Climate-Change Trend 

Cold Average Hot 
1-in-35
Design

1-in-10
Design

1-in-10
Design

1-in-35
Design

Jan-2028 302.0 285.6 254.5 223.4 207.0 
Feb-2028 256.6 242.7 216.2 189.8 175.9 
Mar-2028 203.7 192.6 171.6 150.7 139.6 
Apr-2028 114.6 108.4 96.6 84.8 78.6 
May-2028 54.7 51.7 46.1 40.4 37.5 
Jun-2028 10.8 10.3 9.1 8.0 7.4 
Jul-2028 2.2 2.1 1.9 1.6 1.5 

Aug-2028 1.6 1.5 1.4 1.2 1.1 
Sep-2028 4.9 4.6 4.1 3.6 3.4 
Oct-2028 28.6 27.0 24.1 21.1 19.6 
Nov-2028 139.2 131.6 117.3 103.0 95.4 
Dec-2028 318.1 300.8 268.1 235.3 218.0 
Jan-2029 300.5 284.1 253.0 221.9 205.5 
Feb-2029 255.3 241.4 215.0 188.6 174.6 
Mar-2029 202.7 191.6 170.6 149.7 138.6 
Apr-2029 114.1 107.9 96.1 84.3 78.0 
May-2029 54.4 51.4 45.8 40.2 37.2 
Jun-2029 10.8 10.2 9.1 8.0 7.4 
Jul-2029 2.2 2.1 1.8 1.6 1.5 

Aug-2029 1.6 1.5 1.4 1.2 1.1 
Sep-2029 4.9 4.6 4.1 3.6 3.3 
Oct-2029 28.4 26.9 23.9 21.0 19.4 
Nov-2029 138.5 130.9 116.6 102.3 94.7 
Dec-2029 316.5 299.3 266.5 233.8 216.5 
Jan-2030 299.1 282.7 251.6 220.5 204.1 
Feb-2030 254.1 240.2 213.7 187.3 173.4 
Mar-2030 201.7 190.6 169.7 148.7 137.6 
Apr-2030 113.5 107.3 95.5 83.7 77.5 
May-2030 54.1 51.2 45.5 39.9 36.9 
Jun-2030 10.7 10.1 9.0 7.9 7.3 
Jul-2030 2.2 2.1 1.8 1.6 1.5 

Aug-2030 1.6 1.5 1.4 1.2 1.1 
Sep-2030 4.9 4.6 4.1 3.6 3.3 
Oct-2030 28.3 26.7 23.8 20.9 19.3 
Nov-2030 137.8 130.3 115.9 101.6 94.0 
Dec-2030 315.0 297.7 265.0 232.2 214.9 
Jan-2031 297.6 281.2 250.1 219.0 202.6 
Feb-2031 252.8 238.9 212.5 186.1 172.1 
Mar-2031 200.7 189.6 168.7 147.7 136.6 
Apr-2031 113.0 106.8 94.9 83.1 76.9 
May-2031 53.9 50.9 45.3 39.6 36.7 
Jun-2031 10.7 10.1 9.0 7.9 7.3 
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Table 6.3 
Calendar Month Heating Degree-Day Designs with Climate-Change Trend 

Cold Average Hot 
1-in-35
Design

1-in-10
Design

1-in-10
Design

1-in-35
Design

Jul-2031 2.2 2.1 1.8 1.6 1.5 
Aug-2031 1.6 1.5 1.4 1.2 1.1 
Sep-2031 4.8 4.6 4.1 3.6 3.3 
Oct-2031 28.2 26.6 23.7 20.7 19.2 
Nov-2031 137.1 129.6 115.3 100.9 93.4 
Dec-2031 313.4 296.2 263.4 230.7 213.4 
Jan-2032 296.1 279.7 248.6 217.5 201.1 
Feb-2032 251.6 237.7 211.2 184.8 170.9 
Mar-2032 199.7 188.7 167.7 146.7 135.6 
Apr-2032 112.4 106.2 94.4 82.6 76.4 
May-2032 53.6 50.6 45.0 39.4 36.4 
Jun-2032 10.6 10.0 8.9 7.8 7.2 
Jul-2032 2.2 2.0 1.8 1.6 1.5 

Aug-2032 1.6 1.5 1.3 1.2 1.1 
Sep-2032 4.8 4.6 4.0 3.5 3.3 
Oct-2032 28.0 26.5 23.5 20.6 19.0 
Nov-2032 136.5 128.9 114.6 100.2 92.7 
Dec-2032 311.9 294.6 261.9 229.1 211.8 
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V. Calculating the Peak-Day Design Temperature

SoCalGas’ 1-in-35 Peak-Day design temperature of 40.6 degrees Fahrenheit, 
denoted “Deg-F,” is determined from a statistical analysis of observed annual minimum 
daily system average temperatures constructed from daily temperature recordings from 
the fifteen U.S. Weather Bureau weather stations discussed above.  Since we have a time 
series of daily data by year, the following notation will be used for the remainder of this 
discussion: 

(1) AVGy,d = system avg value of temperature for calendar year “y” and day “d”.

The calendar year, y, can range from 1950 through 2024, while the day, d, can 
range from 1 to 365, for non-leap years, or from 1 to 366 for leap years.  The “upper” 
value for the day, d, thus depends on the calendar year, y, and will be denoted by 
n(y)=365, or 366, respectively, when y is a non-leap year or a leap year. 

For each calendar year, we calculate the following statistic from our series of 
daily system average temperatures defined in equation (1) above: 

n(y) 

(2) MinAVGy = min{ AVGy,d }, for y=1950, 1951,  …, 2024.
d=1 

(The notation used in equation 2 means “For a particular year, y, list all the daily 
values of system average temperature for that year, then pick the smallest one.”) 

The resulting minimum annual temperatures are shown in Tables 7.1 and 7.2, 
below.  Most of the minimum temperatures occur in the months of December, January, or 
February; for a few calendar years the minimums occurred in March or November. 

The statistical methods we use to analyze this data employ software developed to 
fit three generic probability models:  the Generalized Extreme Value (GEV) model, the 
Double-Exponential or GUMBEL (EV1) model and a 2-Parameter Students’ T-
Distribution (T-Dist) model.   [The GEV and EV1 models have the same mathematical 
specification as those implemented in a DOS-based executable-only computer code that 
was developed by Richard L. Lehman and described in a paper published in the 
Proceedings of the Eighth Conference on Applied Climatology, January 17-22, 1993, 
Anaheim, California, pp. 270-273, by the American Meteorological Society, Boston, 
MA., with the title “Two Software Products for Extreme Value Analysis: System 
Overviews of ANYEX and DDEX.”  At the time he wrote the paper, Dr. Lehman was 
with the Climate Analysis Center, National Weather Service/NOAA in Washington, 
D.C., zip code 20233.]  The Statistical Analysis System (SAS) procedure for nonlinear
statistical model estimation (PROC MODEL) was used to do the calculations.  Further,
the calculation procedures were implemented to fit the probability models to observed
maxima of data, like heating degrees.  By recognizing that:
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 n(y) n(y) 

- MinAVGy = - min{AVGy,d} = max{ -AVGy,d}, for y=1950, …, 2024 
` d=1 d=1 

this same software, when applied to the negative of the minimum temperature data, yields 
appropriate probability model estimation results. 

The calculations done to fit any one of the three probability models choose the 
parameter values that provide the “best fit” of the parametric probability model’s 
calculated cumulative distribution function (CDF) to the empirical cumulative 
distribution function (ECDF).  Note that the ECDF is constructed based on the variable “-
MinAVGy” (which is a maximum over a set of negative temperatures) with values of the 
variable MinAVGy  that are the same as shown in Tables 7.1 and 7.2, below.   

In Tables 8.1 and 8.2, the data for -MinAVGy are shown after they have been 
sorted from “lowest” to “highest” value.  The ascending ordinal value is shown in the 
column labeled “RANK” and the empirical cumulative distribution function is calculated 
and shown in the next column.  The formula used to calculate this function is: 

ECDF = (RANK – α)/[MaxRANK + (1 – 2 α)], 
where the parameter “α” (shown as alpha in Table 8.1 and Table 8.2) is a “small” positive 
value (usually less than ½) that is used to bound the ECDF away from 0 and 1.   

Of the three probability models considered (GEV, EV1, and T_Dist) the results 
obtained for the T_Dist model were selected since the fit to the ECDF was better than 
that of either the GEV model or the EV1 model.  (Although convergence to stable 
parameter estimates is occasionally a problem with fitting a GEV model to the ECDF, the 
T_Dist model had no problems with convergence of the iterative procedure to estimate 
parameters.)   

The T_Dist model used here is a three-parameter probability model where the 
varable z = (-MinAVGy  - γ) / θ,  for each year, y, is presumed to follow a T_Dist with 
location parameter, γ, and scale parameter, θ, and a third parameter, ν, that represents the 
number of degrees of freedom.  For a given number of years of data, N, then ν=N-2.  

The following mathematical expression specifies the T_Dist model we fit to the 
data for “-MinAVGy “ shown in Table 8.1 and Table 8.2, below. 

(3) ECDF(-MinAVGy) = Prob { -T < -MinAVGy }= T_Dist{z; γ, θ, ν=N-2},  
where “T_Dist{ . }” is the cumulative probability distribution function for Student’s T-
Distribution2, and  

2 A common mathematical expression for Student’s T-Distribution is provided at 
http://en.wikipedia.org/wiki/Student%27s_t-distribution; with a probability density function 
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(4) z = (-MinAVGy  - γ) / θ,  for each year, y, and
the parameters “γ” and “θ” are estimated for this model for given degrees of

freedom ν=N-2.  The estimated values for γ and θ are shown in Table 8.2 along with the 
fitted values of the model CDF (the column: “Fitted” Model CDF). 

Now, to calculate a peak-day design temperature, TPDDδ , with a specified 
likelihood, δ, that a value less than TPDDδ would be observed, we use the equation 
below: 

(5) δ = Prob { T < TPDDδ }, which is equivalent to
(6) δ = Prob { [(-T - γ) / θ] > [(-TPDDδ - γ) / θ] }, = Prob { [(-T - γ) / θ] > [zδ]

}, where  zδ = [(-TPDDδ - γ) / θ].  In terms of our probability model, 
(7) δ = 1 – T_Dist{ zδ; γ, θ, ν=N-2},
which yields the following equation for zδ,
(7’) zδ = { TINV_Dist{ (1-δ); γ, θ, ν=N-2},   where “TINV_Dist{ . }” is the 

inverse function of the T_Dist{ . } function3. The implied equation for TPDDδ  is: 
(8) TPDDδ = - [γ + (zδ)(θ)].
To calculate the minimum daily (system average) temperature to define our

extreme weather event, we specify that this COLDEST-Day be one where the 
temperature would be lower with a “1-in-35” likelihood.  This criterion translates into 
two equations to be solved based on equations (7) and (8) above: 

(9) solve for “zδ” from equation (7’) above with (1-δ) = (1 - 1/35) = 1 -
0.0286, 

(10) solve for “TPDDδ” from TPDDδ = - [γ + (zδ)(θ)].
The value of zδ = 1.935 and TPDDδ = - [γ + (zδ)(θ)] = 40.6 degrees Fahrenheit,

with values for “ν=N-2”; along with “γ” and “θ” in Tables 8.1 & 8.2, below.   
SoCalGas’ 1-in-10 peak-day design temperature of 42.3 degrees Fahrenheit, is 

calculated in a methodologically similar way as for the 40.6 degree peak day temperature.  
The criteria specified in equation (9) above for a “1-in-35” likelihood would be replaced 
by a “1-in-10” likelihood.   

(9’) solve for “zδ” from equation (7’) above with (1-δ) = (1 - 1/10) = 1 - 
0.1000, 

which yields a “zδ” value of zδ = 1.294 and, TPDDδ = - [γ + (zδ)(θ)] = 42.3 with 
values for “ν=N-2”; along with “γ” and “θ” in Tables 8.1 and 8.2, below. 

such that T_Dist{z; γ, θ, ν=N-2}=∫f(t) dt, from t=-∞ to t=z.  Also, the notation Г(.) is known in 
mathematics as the GAMMA function; see http://www.wikipedia.org/wiki/Gamma_function for a 
description.  Also, see Statistical Theory, 3rd Ed., B.W. Lindgren, MacMillian Pub. Inc, 1976, pp. 336-337. 
3 Computer software packages such as SAS and EXCEL have implemented statistical and mathematical 
functions to readily calculate values for T_Dist{ . } and TINV_Dist{ . } as defined above. 
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A plot of the cumulative distribution function for MinAVGy  based on 
“ν=N-2”, the fitted model parameters, “γ” and “θ” with values in Tables 8.1 and 8.2, 
below, is shown in Figure 1.   
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Table 7.1 
 

YEAR MINAVG Month(MinAvg) 
1950 40.83 Jan 
1951 44.45 Dec 
1952 43.12 Jan 
1953 45.51 Feb 
1954 45.63 Dec 
1955 45.83 Dec 
1956 44.84 Feb 
1957 39.49 Jan 
1958 46.34 Nov 
1959 48.26 Feb 
1960 42.23 Jan 
1961 47.20 Dec 
1962 43.41 Jan 
1963 42.42 Jan 
1964 45.28 Nov 
1965 44.71 Jan 
1966 46.82 Jan 
1967 40.80 Dec 
1968 40.46 Dec 
1969 44.85 Jan 
1970 46.81 Dec 
1971 42.97 Jan 
1972 41.43 Dec 
1973 45.24 Jan 
1974 43.02 Jan 
1975 44.56 Jan 
1976 44.68 Jan 
1977 48.22 Jan 
1978 41.66 Dec 
1979 41.45 Jan 
1980 50.23 Jan 
1981 49.27 Jan 
1982 45.42 Jan 
1983 48.67 Jan 
1984 46.80 Dec 
1985 45.23 Feb 
1986 48.68 Feb 
1987 43.47 Dec 
1988 43.38 Dec 
1989 40.45 Feb 
1990 39.09 Dec 
1991 48.65 Mar 
1992 47.51 Dec 
1993 46.11 Jan 
1994 47.07 Nov 
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Table 7.2 

YEAR MINAVG Month(MinAvg) 
1995 49.63 Dec 
1996 44.77 Feb 
1997 48.36 Jan 
1998 43.53 Dec 
1999 48.86 Jan 
2000 48.85 Mar 
2001 47.15 Jan 
2002 45.94 Jan 
2003 47.19 Dec 
2004 48.22 Nov 
2005 47.30 Jan 
2006 45.70 Mar 
2007 41.42 Jan 
2008 45.95 Dec 
2009 45.31 Dec 
2010 44.57 Dec 
2011 46.99 Feb 
2012 46.77 Dec 
2013 43.76 Jan 
2014 47.93 Dec 
2015 45.59 Jan 
2016 46.89 Dec 
2017 47.46 Jan 
2018 47.35 Feb 
2019 47.31 Feb 
2020 50.03 Feb 
2021 47.02 Jan 
2022 48.16 Dec 
2023 46.35 Feb 
2024 50.21 Jan 
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Table 8.1 (alpha=0.375) 

Year -MinAvg
Month( -
MinAvg) Rank 

Empirical 
CDF 

Model - 
 [(-MinAvg - γ)/θ] 

Model - 
Fitted CDF 

1980 -50.2320 Jan 1 0.0083 -1.6446 0.0522 
2024 -50.2139 Jan 2 0.0216 -1.6379 0.0529 
2020 -50.0283 Feb 3 0.0349 -1.5694 0.0604 
1995 -49.6294 Dec 4 0.0482 -1.4220 0.0796 
1981 -49.2736 Jan 5 0.0615 -1.2905 0.1005 
1999 -48.8587 Jan 6 0.0748 -1.1372 0.1296 
2000 -48.8456 Mar 7 0.0880 -1.1324 0.1306 
1986 -48.6762 Feb 8 0.1013 -1.0698 0.1441 
1983 -48.6666 Jan 9 0.1146 -1.0662 0.1449 
1991 -48.6494 Mar 10 0.1279 -1.0599 0.1463 
1997 -48.3606 Jan 11 0.1412 -0.9532 0.1718 
1959 -48.2588 Feb 12 0.1545 -0.9156 0.1815 
1977 -48.2240 Jan 13 0.1678 -0.9027 0.1848 
2004 -48.2213 Nov 14 0.1811 -0.9017 0.1851 
2022 -48.1637 Dec 15 0.1944 -0.8804 0.1908 
2014 -47.9338 Dec 16 0.2076 -0.7955 0.2145 
1992 -47.5066 Dec 17 0.2209 -0.6376 0.2629 
2017 -47.4622 Jan 18 0.2342 -0.6212 0.2682 
2018 -47.3484 Feb 19 0.2475 -0.5792 0.2821 
2019 -47.3085 Feb 20 0.2608 -0.5644 0.2871 
2005 -47.3048 Jan 21 0.2741 -0.5630 0.2876 
1961 -47.1985 Dec 22 0.2874 -0.5237 0.3010 
2003 -47.1853 Dec 23 0.3007 -0.5189 0.3027 
2001 -47.1498 Jan 24 0.3140 -0.5058 0.3073 
1994 -47.0652 Nov 25 0.3272 -0.4745 0.3183 
2021 -47.0190 Jan 26 0.3405 -0.4574 0.3244 
2011 -46.9859 Feb 27 0.3538 -0.4452 0.3287 
2016 -46.8876 Dec 28 0.3671 -0.4089 0.3419 
1966 -46.8247 Jan 29 0.3804 -0.3857 0.3504 
1970 -46.8136 Dec 30 0.3937 -0.3815 0.3520 
1984 -46.8021 Dec 31 0.4070 -0.3773 0.3535 
2012 -46.7677 Dec 32 0.4203 -0.3646 0.3582 
2023 -46.3471 Feb 33 0.4336 -0.2092 0.4175 
1958 -46.3423 Nov 34 0.4468 -0.2074 0.4181 
1993 -46.1139 Jan 35 0.4601 -0.1230 0.4512 
2008 -45.9464 Dec 36 0.4734 -0.0611 0.4757 
2002 -45.9428 Jan 37 0.4867 -0.0598 0.4762 
1955 -45.8344 Dec 38 0.5000 -0.0197 0.4921 
2006 -45.6981 Mar 39 0.5133 0.0306 0.5122 
1954 -45.6304 Dec 40 0.5266 0.0556 0.5221 
2015 -45.5942 Jan 41 0.5399 0.0690 0.5274 
1953 -45.5123 Feb 42 0.5532 0.0993 0.5394 
1982 -45.4166 Jan 43 0.5664 0.1346 0.5534 
2009 -45.3076 Dec 44 0.5797 0.1749 0.5692 
1964 -45.2846 Nov 45 0.5930 0.1834 0.5725 
1973 -45.2409 Jan 46 0.6063 0.1996 0.5788 
1985 -45.2315 Feb 47 0.6196 0.2030 0.5802 
1969 -44.8499 Jan 48 0.6329 0.3440 0.6341 
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Table 8.2 (alpha=0.375) 
 

Year -MinAvg 
Month( -
MinAvg) Rank 

Empirical 
CDF 

Model - 
 [(-MinAvg - γ)/θ] 

Model - 
Fitted CDF 

1956 -44.8409 Feb 49 0.6462 0.3474 0.6353 
1996 -44.7701 Feb 50 0.6595 0.3735 0.6451 
1965 -44.7135 Jan 51 0.6728 0.3944 0.6528 
1976 -44.6809 Jan 52 0.6860 0.4065 0.6572 
2010 -44.5719 Dec 53 0.6993 0.4467 0.6718 
1975 -44.5588 Jan 54 0.7126 0.4516 0.6735 
1951 -44.4532 Dec 55 0.7259 0.4906 0.6874 
2013 -43.7603 Jan 56 0.7392 0.7466 0.7712 
1998 -43.5347 Dec 57 0.7525 0.8300 0.7954 
1987 -43.4730 Dec 58 0.7658 0.8528 0.8017 
1962 -43.4085 Jan 59 0.7791 0.8766 0.8082 
1988 -43.3816 Dec 60 0.7924 0.8865 0.8109 
1952 -43.1218 Jan 61 0.8056 0.9825 0.8355 
1974 -43.0222 Jan 62 0.8189 1.0194 0.8443 
1971 -42.9680 Jan 63 0.8322 1.0394 0.8490 
1963 -42.4199 Jan 64 0.8455 1.2419 0.8909 
1960 -42.2309 Jan 65 0.8588 1.3117 0.9031 
1978 -41.6586 Dec 66 0.8721 1.5232 0.9340 
1979 -41.4546 Jan 67 0.8854 1.5986 0.9429 
1972 -41.4261 Dec 68 0.8987 1.6091 0.9440 
2007 -41.4162 Jan 69 0.9120 1.6128 0.9444 
1950 -40.8348 Jan 70 0.9252 1.8276 0.9641 
1967 -40.8029 Dec 71 0.9385 1.8394 0.9650 
1968 -40.4596 Dec 72 0.9518 1.9662 0.9735 
1989 -40.4454 Feb 73 0.9651 1.9715 0.9738 
1957 -39.4891 Jan 74 0.9784 2.3248 0.9886 
1990 -39.0896 Dec 75 0.9917 2.4724 0.9921 

       

  
"Gamma" 

(Fitted) = -45.78    

  
"Theta" 

(Fitted) = 2.71    

  
Deg. 

Freedom= 73    
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Figure 1 
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VI. Estimating the Uncertainty in the Peak-Day Design Temperature 

 

The calculated peak-day design temperatures in section V above also have a 
statistical uncertainty associated with them.  The estimated measures of uncertainty 
recommended for our use are calculated from the fitted model for the probability 
distribution and are believed to be reasonable, although rough, approximations. 

The basic approach used the estimated parameters for the probability distribution 
(see the results provided in Tables 8.1 and 8.2, above) to calculate the fitted temperatures 
as a function of the empirical CDF listed in Tables 8.1 and 8.2, above.  These fitted 
temperatures are then compared with the observed temperatures by calculating the 
difference = “observed” – “fitted” values.  The full set of differences are then separated 
into the lower third (L), the middle third (M) and the upper third (U) of the distribution.  
Finally, values of the root-mean-square error (RMSE) of the differences in each third of 
the distribution are calculated, along with the RMSE for the entire set of differences 
overall.  The data in Tables 9.1 and 9.2, below, show the temperature data and the 
resulting RMSE values. 

The formula below is used to calculate the RMSE for a specified set of “N” data 
differences: 

RMSE = SQRT{ (Σ e[ i ] 2  )/ (N-2)}, 
 i=1, ..., N 

where e[ i ] = observed less fitted value of  temperature, T[ i ].  The number of 
estimated parameters (3 for the GEV model, 2 for the T-Dist and EV1 models) is 
subtracted from the respective number of data differences, N, in the denominator of the 
RMSE expression. 

Since both the “1-in-35” and “1-in-10” peak-day temperature values are in the 
lower third quantile of the fitted distribution, the calculated standard error for these 
estimates is 0.58 Deg-F. 
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Table 9.1 

Quantile: 
(Lower, Middle, 

Upper 3rd's) 
Observed T[ i ] 
Temp. Ranked 

Fitted Value of T[ 

i ]

Residual e[ i ]: 
Obs'd. less  

Fitted Value of T[ 

i ] Square of  e[ i ]: 
U 50.2320 52.4163 -2.1843 4.7712 
U 50.2139 51.3500 -1.1360 1.2906 
U 50.0283 50.7620 -0.7337 0.5383 
U 49.6294 50.3401 -0.7107 0.5051 
U 49.2736 50.0048 -0.7312 0.5346 
U 48.8587 49.7233 -0.8645 0.7474 
U 48.8456 49.4784 -0.6327 0.4004 
U 48.6762 49.2602 -0.5840 0.3411 
U 48.6666 49.0625 -0.3959 0.1567 
U 48.6494 48.8807 -0.2313 0.0535 
U 48.3606 48.7119 -0.3513 0.1234 
U 48.2588 48.5538 -0.2949 0.0870 
U 48.2240 48.4046 -0.1806 0.0326 
U 48.2213 48.2629 -0.0416 0.0017 
U 48.1637 48.1278 0.0359 0.0013 
U 47.9338 47.9983 -0.0645 0.0042 
U 47.5066 47.8738 -0.3671 0.1348 
U 47.4622 47.7535 -0.2913 0.0848 
U 47.3484 47.6370 -0.2886 0.0833 
U 47.3085 47.5239 -0.2154 0.0464 
U 47.3048 47.4138 -0.1090 0.0119 
U 47.1985 47.3063 -0.1079 0.0116 
U 47.1853 47.2012 -0.0159 0.0003 
U 47.1498 47.0983 0.0515 0.0027 
U 47.0652 46.9972 0.0680 0.0046 
M 47.0190 46.8978 0.1212 0.0147 
M 46.9859 46.7999 0.1860 0.0346 
M 46.8876 46.7034 0.1842 0.0339 
M 46.8247 46.6080 0.2168 0.0470 
M 46.8136 46.5136 0.2999 0.0900 
M 46.8021 46.4202 0.3819 0.1459 
M 46.7677 46.3275 0.4402 0.1938 
M 46.3471 46.2354 0.1116 0.0125 
M 46.3423 46.1439 0.1984 0.0394 
M 46.1139 46.0528 0.0611 0.0037 
M 45.9464 45.9620 -0.0157 0.0002 
M 45.9428 45.8715 0.0714 0.0051 
M 45.8344 45.7810 0.0534 0.0029 
M 45.6981 45.6905 0.0076 0.0001 
M 45.6304 45.5999 0.0305 0.0009 
M 45.5942 45.5091 0.0851 0.0072 
M 45.5123 45.4180 0.0943 0.0089 
M 45.4166 45.3265 0.0901 0.0081 
M 45.3076 45.2345 0.0731 0.0053 
M 45.2846 45.1418 0.1428 0.0204 
M 45.2409 45.0483 0.1925 0.0371 
M 45.2315 44.9540 0.2775 0.0770 
M 44.8499 44.8586 -0.0087 0.0001 
M 44.8409 44.7620 0.0788 0.0062 
M 44.7701 44.6641 0.1059 0.0112 
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Table 9.2 

Quantile: 
(Lower, 

Middle, Upper 
3rd's) 

Observed T[ i ] 
Temp. Ranked 

Fitted Value of 
T[ i ] 

Residual e[ i ]: Obs'd. less 
Fitted Value of T[ i ] 

Square of  
e[ i ]: 

L 44.7135 44.5648 0.1488 0.0221 
L 44.6809 44.4637 0.2172 0.0472 
L 44.5719 44.3607 0.2112 0.0446 
L 44.5588 44.2556 0.3032 0.0919 
L 44.4532 44.1482 0.3051 0.0931 
L 43.7603 44.0381 -0.2777 0.0771 
L 43.5347 43.9249 -0.3902 0.1523 
L 43.4730 43.8085 -0.3355 0.1125 
L 43.4085 43.6882 -0.2797 0.0782 
L 43.3816 43.5636 -0.1820 0.0331 
L 43.1218 43.4341 -0.3123 0.0975 
L 43.0222 43.2990 -0.2769 0.0766 
L 42.9680 43.1574 -0.1894 0.0359 
L 42.4199 43.0082 -0.5883 0.3461 
L 42.2309 42.8501 -0.6192 0.3834 
L 41.6586 42.6812 -1.0226 1.0457 
L 41.4546 42.4995 -1.0449 1.0919 
L 41.4261 42.3017 -0.8756 0.7667 
L 41.4162 42.0836 -0.6674 0.4454 
L 40.8348 41.8387 -1.0039 1.0077 
L 40.8029 41.5571 -0.7543 0.5689 
L 40.4596 41.2219 -0.7623 0.5811 
L 40.4454 40.8000 -0.3546 0.1258 
L 39.4891 40.2120 -0.7229 0.5225 
L 39.0896 39.1457 -0.0561 0.0031 

Overall RMSE (e[ i ]): 0.51 °F 
Upper 3rd RMSE (e[ i ]): 0.66 °F 

Middle 3rd RMSE (e[ i ]): 0.19 °F 
Lower 3rd RMSE (e[ i ]): 0.58 °F 
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VII. The Relationship between Annual Likelihoods for Peak-Day 
Temperatures and “Expected Return Time”  
 

The event whose probability distribution we’ve modeled is the likelihood that the 
minimum daily temperature over a calendar year is less than a specified value.  And, in 
particular, we’ve used this probability model to infer the value of a temperature, our 
peak-day design temperature (TPDDδ), that corresponds to a pre-defined likelihood, δ, 
that the observed minimum temperature is less than or equal to this design temperature.   

(1) δ = Prob{ Minimum Daily Temperature over the Year < TPDDδ }. 
For some applications, it is useful to think of how this specified likelihood (or 

“risk level” δ) relates to the expected number of years until this Peak-Day event would 
first occur.  This expected number of years is what is meant by the return period.  The 
results stated below are found in the book: Statistics of Extremes, E.J. Gumbel, 
Columbia University Press, 1958, on pages 21-25. 

(2) E[ #Yrs for Peak-Day Event to Occur ] =  1 / δ,  
1 / Prob{ Minimum Daily Temperature over the Year < TPDDδ }. 
For our peak-day design temperature (40.6°F) associated with a 1-in-35 annual 

likelihood, the return period is 35 years (δ=1/35).  For the 42.3°F peak-day design 
temperature, the return period is 10 years (δ=1/10).  Occasionally, a less precise 
terminology is used.  For example, the 40.6°F peak-day design temperature may be 
referred to as a “1-in-35 year cold day”; and the 42.3°F peak-day design temperature may 
be referred to as a “1-in-10 year cold day.” 

The probability model for the return period, as a random variable, is a geometric 
(discrete) distribution with positive integer values for the return period. The parameter δ 
= Prob{ Minimum Daily Temperature over the Year < TPDDδ }. 

(3) Prob{ return period = r } = (1 – δ) (r-1) δ, for r = 1, 2, 3, . . . 
The expected value of the return period is already given in (2) above; the variance 

of the return period is: 
(4) Var[ return period ] = (E[ return period ])2  x (1- (1 / E [ return period ])), 
(4’) Var[ return period ] = (E[ return period ]) x (E [ return period ] - 1). 
Equations (4) and (4’) indicate that the standard deviation (square root of the 

variance) of the return period is nearly equal to its expected value.  Thus, there is 
substantial variability about the expected value—a return period is not very precise.  
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Weather for SDG&E:  Heating Degree 
Days – Average and Cold Year Designs; and 
Winter Peak Day Design Temperatures 
October 2025 
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I. Overview 

San Diego Gas and Electric Company’s service area for natural gas extends from 
southern Orange County throughout San Diego County to the Mexican border.  To quantify 
the overall temperature experienced within this region, SDG&E aggregates daily 
temperature recordings from three U.S. Weather Bureau weather stations into one system 
average heating degree-day (“HDD”) figure.  The table below lists weather station 
locations along with its associated temperature zone(s). 

 
Table 1 

Representative Weather Stations with Temperature Zones 

Station Location  Weight Temperature Zone  

1. Miramar Naval Air Station 1/3 Coastal and Inland 

2. San Diego Lindbergh Field 
(International Airport) 

1/3 Coastal  

3. El Cajon 1/3 Inland  

 

SDG&E uses 65° Fahrenheit to calculate the number of HDDs.  One heating 
degree-day is accumulated for each degree that the daily average is below 65° Fahrenheit.  
To arrive at the system average HDDs figure for its entire service area, SDG&E weights 
the HDD figure for each zone using the weights1 shown in Table 1.  These weights are 
used in calculating the data shown from January 2005 to December 2024. 

Daily maximum and minimum temperatures, for each individual weather station in 
the table above, are from the National Climatic Data Center or from preliminary data that 
SoCalGas captures each day for various individual weather stations as well as for its system 
average values of HDD. For each station, the average temperature is computed as the 
(maximum + minimum)/2 and this value is used to compute the heating degrees (i.e., the 
daily HDD) for each station as well.  System average values of HDD are then computed 
using the weights for each respective station.  Annual and monthly HDDs for the entire 
SDG&E service area from 2005 to 2024 are listed in Table 2, below. 
  

1 The location of the station for Miramar is at the boundary of the Coastal and Inland zones.  
Correspondingly, both the Coastal and Inland zones are considered represented in the data for the Miramar 
station. 
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Table 2 
Calendar Month Heating Degree-Days (Jan. 2005 through Dec. 2024) 

 Month            Total 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
"Cal-
Year" 

2005 247 201 160 118 32 4 0 0 3 37 95 230 1126 

2006 276 205 307 143 31 0 0 0 1 35 88 287 1373 

2007 367 228 153 137 62 18 0 0 4 28 110 342 1448 

2008 331 277 184 129 88 15 0 0 0 13 59 289 1385 

2009 177 248 203 141 30 10 0 0 0 40 123 293 1265 

2010 240 215 194 179 87 21 9 1 3 32 184 242 1407 

2011 222 279 196 97 73 20 0 0 1 24 174 342 1427 

2012 232 240 225 126 36 12 0 0 0 18 103 269 1261 

2013 326 272 150 105 23 6 0 1 0 41 104 243 1269 

2014 160 143 82 77 20 1 0 0 0 0 46 172 700 

2015 160 85 63 42 47 0 0 0 0 0 97 254 747 

2016 240 81 96 45 30 0 0 0 0 0 70 198 760 

2017 244 158 83 31 40 3 0 0 0 1 38 149 747 

2018 111 169 136 58 48 1 0 0 0 1 48 195 767 

2019 216 290 161 48 69 2 0 0 2 14 88 232 1121 

2020 233 194 178 96 3 0 0 0 0 6 133 245 1088 

2021 251 190 234 92 40 5 0 0 1 48 72 306 1239 

2022 270 241 192 104 71 6 0 0 0 16 218 305 1422 

2023 336 336 306 183 108 29 0 0 3 18 106 210 1635 

2024 295 257 227 139 61 13 0 1 4 17 154 237 1404 

              

              
20-Yr-Avg (Jan 2005-Dec 2024) 

Avg. 246.7 215.3 176.4 104.5 49.9 8.3 0.5 0.1 1.0 19.3 105.5 252.0 1179.4 

St.Dev. 64.8 65.9 66.6 44.3 26.8 8.6 2.0 0.3 1.5 15.5 48.1 52.7 287.6 

Min. 111.4 80.7 62.7 31.2 2.7 0.0 0.0 0.0 0.0 0.0 37.7 149.3 700.3 

Max. 367.3 335.7 307.3 183.0 108.4 28.9 9.0 1.2 4.0 48.1 218.3 342.4 1634.9 
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II. Calculations to Define Our Average-Temperature Year 

The simple average of the 20-year period (January 2005 through December 2024) 
was used to represent the Average Year total and the individual monthly values for HDD. 
In this proceeding, the standard deviation has been calculated using an approach that 
compensates for the annual HDD values for the years 2014-2018 in SDG&E’s service 
territory being dramatically lower than in any preceding year going back to 19722. A 
regression with a dummy variable for the years 2014-2018 has been used to estimate a 
shift in the level of annual HDD that occurred beginning in 2014. A dummy variable 
takes the value one for some observations to indicate the presence of an effect or 
membership in a group and zero for the remaining observations. Estimating the effect of 
the dummy variable gives an estimate of that effect or the impact of membership in that 
group. A dummy variable is used here to estimate the average effect on annual HDD of a 
given year having membership in the group of years 2014-2018. The dataset is SDG&E 
system-wide annual HDD for the years 2005-2024. The regression equation is: 

𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽 ∗ 𝑡𝑡 + 𝛽𝛽2014−2018 ∗ 𝐷𝐷2014−2018 + 𝜀𝜀 

where 𝐷𝐷2014−2018 is a dummy variable for the years 2014-2018 and 𝛽𝛽2014−2018 is the 
corresponding dummy coefficient. This regression equation estimates average HDD over 
the period 2005-2024 controlling for time trends in HDD and the warm weather regime 
of years 2014-2018. It’s important to note that p-value for the estimate of 𝛽𝛽2014−2018 is 
virtually zero, indicating an extremely low probability that membership in the group of 
years 2014-2018 had no effect on annual HDDs. Please see Table 3 below for the full 
regression output. 

Table 3 

Dummy Regression for Calculation of Heating Degree-Day Standard Deviation 

Regression Statistics     
Multiple R 0.897742518     
R Square 0.805941629     
Adjusted R Square 0.783111233     
Standard Error 133.9412539     
Observations 20     
      
ANOVA      

  df SS MS F Significance F 
Regression 2 1266627.316 633313.6582 35.30125404 8.85983E-07 
Residual 17 304984.4116 17940.2595   
Total 19 1571611.728       

      
  Coefficients Standard Error t Stat P-value  

Intercept 1301.713846 62.89719567 20.69589641 1.70995E-13  
Time 2.282615385 5.253608211 0.43448527 0.669400746  
Regime Dummy -584.9652308 69.96049455 -8.361365004 1.98979E-07  

2 The same approach to control warm weather regime from 2014 to 2018 when estimating standard 
deviation was used in CAP 2024. 
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The dummy variable’s estimated effect, 𝛽𝛽2014−2018, is subtracted from the actual 
annual HDD data for years 2014-2018 to adjust the data to remove the level shift. The 
standard deviation has been calculated to be 127.4 using this adjusted dataset. This 
adjusted standard deviation has been used to design the Cold Years based on a “1-in-10” 
and “1-in-35” chance, c, that the respective annual “Cold Year” hddc value would be 
exceeded. A probability model for the annual HDD is based on a t-Distribution with N-1 
degrees of freedom, where N is the number of years of HDD data we use, µ is the 
average of the last 20 years of HDD, and S20 is the average of the standard deviations of 
the 20 most recent 20-year periods: 
    U = (HDDy - µ)/S20, has a t-Distribution with N-1 degrees of freedom. 

 

III. Calculating the Cold-Temperature Year Weather Designs 
 
Cold Year HDD Weather Designs 

For SDG&E, cold-temperature-year HDD weather designs are developed with a 
1-in-35-year chance of occurrence.  In terms of probabilities this can be expressed as the 
following for a “1-in-35” cold-year HDD value in equation 1 and a “1-in-10” cold-year 
HDD value in equation 2, with Annual HDD as the random variable: 

(1) Prob { Annual HDD > “1-in-35” Cold-Yr HDD } = 1/35 = 0.0286 

 

(2) Prob { Annual HDD > “1-in-10” Cold-Yr HDD } = 1/10 = 0.1000 

An area of 0.0286 under one tail of the T-Distribution translates to 2.025 standard 
deviations above an average-year based on a t-statistic with 19 degrees of freedom.  
Using the standard deviation calculated as described earlier, 127.4 HDD, these equations 
yield values of about 1,437 HDD for a “1-in-35” cold year and 1,348 as the number of 
HDDs for a “1-in-10” cold year (an area of 0.1000 under one tail of the T-Distribution 
translates to 1.328 standard deviations above an average-year based on a t-statistic with 
19 degrees of freedom).  For example, the “1-in-35” cold-year HDD is calculated as 
follows: 

(3) Cold-year HDD = 1,437, which equals approximately  

      1,179 average-year HDDs  +  2.025 * 127.4 

Table 4 below shows monthly HDD figures for “1-in-35” cold year, “1-in-10” 
cold year and, average year temperature designs.  The monthly average-temperature-year 
HDDs are calculated from weighted monthly HDDs from 2005 to 2024, as shown as the 
bottom of Table 2, above.  For example, the average-year December value of 251.9 HDD 
equals the simple average of the 20 December HDD figures from 2005 to 2024.  SDG&E 
calculates the cold-temperature-year monthly HDD values using the same shape of the 
average-year HDDs.  For example, since 21.4 percent (251.9 / 1179) of average-
temperature-year HDDs occurred in December, the estimated number of HDDs during 
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December for a cold-year is equal to 1,437 HDDs multiplied by 21.4 percent, or 307.0 
HDDs.  

 

Table 4 
Calendar Month Heating Degree-Day Designs 

  Cold Average Hot 

  
1-in-35 
Design 

1-in-10 
Design   

1-in-10 
Design 

1-in-35 
Design 

January 300.5 281.9 246.6 211.2 192.6 
February 262.3 246.1 215.2 184.4 168.1 
March 215.0 201.6 176.4 151.1 137.8 
April 127.3 119.4 104.4 89.5 81.6 
May 60.7 57.0 49.8 42.7 38.9 
June 10.1 9.5 8.3 7.1 6.5 
July 0.6 0.6 0.5 0.4 0.4 
August 0.2 0.2 0.1 0.1 0.1 
September 1.2 1.2 1.0 0.9 0.8 
October 23.5 22.1 19.3 16.5 15.1 
November 128.5 120.5 105.4 90.3 82.4 
December 307.0 288.0 251.9 215.8 196.8 
Total 1,437 1,348 1,179 1,010 921 

 

IV. Adjusting Forecasted HDDs for a Climate-Change Trend 
 

SDG&E incorporates a climate-change warming trend that gradually reduces 
HDDs by 6 HDDs per year over the forecast period. The annual reduction is based on the 
latest twenty-year trend in 20-year-averaged HDDs. That is, they are based on the 
observed trend in changes starting with average HDDs for years 1986-2005, then 1987-
2006, 1988-2007...and ending with the average HDDs for years 2005-2024. 

 
 Table 5 below shows system HDDs, rolling 20-year averaged HDDs, and the 

annual changes in those rolling 20-year averages.  The actual average annual change is -
6.1 HDDs for the most recent twenty of the 20-year averages (with ending years from 
2005 through 2024).  A simple “ordinary least squares” regression-fitted time trend 
(using Microsoft Excel’s “LINEST” function) was applied to those same annual changes, 
resulting in a fitted estimation of -9.6 HDDs per year.  However, after CGR 2022, which 
incorporated a tread of -6 HDD per year, HDDs of 3 consecutive years from 2022 to 
2024 are colder than average years, it was decided to decrease average-year and cold-year 
forecasted HDD’s by 6 HDDs per year based on average change of the last 20 years, 
which is the same tread as that in CGR 2022 and CGR 2024, starting with the first 
forecast year of 2025. 
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Table 5 
Average Annual Changes in 20-Year Averaged Heating-Degree Days 

   
Regression Fitted 

trend Actual 
20 Year: (2005-2024) -9.6 -6.0 

    

Year SDG&E System 
HDDs 

20-year averaged 
HDDs 

Annual change in 20-year 
averaged HDDs 

1981 961   
1982 1346   
1983 1126   
1984 1126   
1985 1402   
1986 1027   
1987 1404   
1988 1272   
1989 1258   
1990 1322   
1991 1316 1252.3  
1992 1007 1232.0 -20.3 
1993 1105 1212.4 -19.6 
1994 1467 1215.0 2.6 
1995 1078 1182.9 -32.1 
1996 1154 1182.6 -0.3 
1997 1156 1188.0 5.4 
1998 1576 1210.5 22.5 
1999 1606 1228.8 18.3 
2000 1322 1251.4 22.6 
2001 1540 1280.4 29.0 
2002 1479 1287.0 6.6 
2003 1268 1294.1 7.1 
2004 1248 1300.2 6.1 
2005 1126 1286.4 -13.8 
2006 1373 1303.7 17.3 
2007 1448 1305.9 2.2 
2008 1385 1311.6 5.6 
2009 1265 1311.9 0.4 
2010 1407 1316.2 4.2 
2011 1427 1321.8 5.6 
2012 1261 1334.4 12.7 
2013 1269 1342.6 8.2 
2014 700 1304.3 -38.3 
2015 747 1287.7 -16.6 
2016 760 1268.0 -19.7 
2017 747 1247.6 -20.4 
2018 767 1207.1 -40.5 
2019 1121 1182.9 -24.3 
2020 1088 1171.2 -11.7 
2021 1239 1156.1 -15.0 
2022 1422 1153.3 -2.8 
2023 1635 1171.7 18.4 
2024 1404 1179.4 7.8 
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Below tables 6.1 – 6.3 show the complete monthly weather design: 
Table 6.1 

Calendar Month Heating Degree-Day Designs with Climate-Change Trend 

  Cold   Average Hot   

  
1-in-35 
Design 

1-in-10 
Design   1-in-10 

Design 
1-in-35 
Design 

Jan-2024 300.5 281.9 246.6 211.2 192.6 
Feb-2024 262.3 246.1 215.2 184.4 168.1 
Mar-2024 215.0 201.6 176.4 151.1 137.8 
Apr-2024 127.3 119.4 104.4 89.5 81.6 
May-2024 60.7 57.0 49.8 42.7 38.9 
Jun-2024 10.1 9.5 8.3 7.1 6.5 
Jul-2024 0.6 0.6 0.5 0.4 0.4 

Aug-2024 0.2 0.2 0.1 0.1 0.1 
Sep-2024 1.2 1.2 1.0 0.9 0.8 
Oct-2024 23.5 22.1 19.3 16.5 15.1 
Nov-2024 128.5 120.5 105.4 90.3 82.4 
Dec-2024 307.0 288.0 251.9 215.8 196.8 
Jan-2025 299.3 280.7 245.3 210.0 191.4 
Feb-2025 261.2 245.0 214.1 183.3 167.0 
Mar-2025 214.1 200.7 175.5 150.2 136.9 
Apr-2025 126.8 118.9 103.9 88.9 81.0 
May-2025 60.5 56.7 49.6 42.4 38.7 
Jun-2025 10.1 9.4 8.2 7.1 6.4 
Jul-2025 0.6 0.6 0.5 0.4 0.4 

Aug-2025 0.2 0.2 0.1 0.1 0.1 
Sep-2025 1.2 1.2 1.0 0.9 0.8 
Oct-2025 23.4 22.0 19.2 16.4 15.0 
Nov-2025 128.0 120.0 104.9 89.8 81.8 
Dec-2025 305.7 286.7 250.6 214.5 195.5 
Jan-2026 298.0 279.4 244.1 208.7 190.1 
Feb-2026 260.1 243.9 213.0 182.2 165.9 
Mar-2026 213.2 199.8 174.6 149.3 136.0 
Apr-2026 126.2 118.3 103.4 88.4 80.5 
May-2026 60.2 56.5 49.3 42.2 38.4 
Jun-2026 10.0 9.4 8.2 7.0 6.4 
Jul-2026 0.6 0.6 0.5 0.4 0.4 

Aug-2026 0.2 0.2 0.1 0.1 0.1 
Sep-2026 1.2 1.2 1.0 0.9 0.8 
Oct-2026 23.3 21.9 19.1 16.3 14.9 
Nov-2026 127.4 119.5 104.4 89.2 81.3 
Dec-2026 304.4 285.4 249.3 213.2 194.2 
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Table 6.2 
Calendar Month Heating Degree-Day Designs with Climate-Change Trend 

  Cold   Average Hot   

  
1-in-35 
Design 

1-in-10 
Design   1-in-10 

Design 
1-in-35 
Design 

Jan-2027 296.8 278.2 242.8 207.5 188.9 
Feb-2027 259.0 242.8 211.9 181.1 164.8 
Mar-2027 212.3 199.0 173.7 148.4 135.1 
Apr-2027 125.7 117.8 102.8 87.9 80.0 
May-2027 60.0 56.2 49.1 41.9 38.2 
Jun-2027 10.0 9.4 8.2 7.0 6.4 
Jul-2027 0.6 0.6 0.5 0.4 0.4 

Aug-2027 0.2 0.2 0.1 0.1 0.1 
Sep-2027 1.2 1.2 1.0 0.9 0.8 
Oct-2027 23.2 21.8 19.0 16.2 14.8 
Nov-2027 126.9 118.9 103.8 88.7 80.7 
Dec-2027 303.2 284.1 248.0 211.9 192.9 
Jan-2028 295.5 276.9 241.6 206.2 187.6 
Feb-2028 257.9 241.7 210.8 180.0 163.7 
Mar-2028 211.4 198.1 172.8 147.5 134.2 
Apr-2028 125.2 117.3 102.3 87.3 79.5 
May-2028 59.7 56.0 48.8 41.7 37.9 
Jun-2028 9.9 9.3 8.1 6.9 6.3 
Jul-2028 0.6 0.6 0.5 0.4 0.4 

Aug-2028 0.2 0.2 0.1 0.1 0.1 
Sep-2028 1.2 1.2 1.0 0.9 0.8 
Oct-2028 23.1 21.7 18.9 16.2 14.7 
Nov-2028 126.3 118.4 103.3 88.2 80.2 
Dec-2028 301.9 282.9 246.8 210.6 191.6 
Jan-2029 294.3 275.6 240.3 205.0 186.3 
Feb-2029 256.8 240.6 209.7 178.9 162.6 
Mar-2029 210.5 197.2 171.9 146.6 133.3 
Apr-2029 124.6 116.7 101.8 86.8 78.9 
May-2029 59.5 55.7 48.6 41.4 37.7 
Jun-2029 9.9 9.3 8.1 6.9 6.3 
Jul-2029 0.6 0.5 0.5 0.4 0.4 

Aug-2029 0.2 0.2 0.1 0.1 0.1 
Sep-2029 1.2 1.1 1.0 0.9 0.8 
Oct-2029 23.0 21.6 18.8 16.1 14.6 
Nov-2029 125.8 117.9 102.7 87.6 79.7 
Dec-2029 300.6 281.6 245.5 209.4 190.4 
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Table 6.3 
Calendar Month Heating Degree-Day Designs with Climate-Change Trend 

  Cold   Average Hot   

  
1-in-35 
Design 

1-in-10 
Design   1-in-10 

Design 
1-in-35 
Design 

Jan-2030 293.0 274.4 239.0 203.7 185.1 
Feb-2030 255.7 239.5 208.6 177.8 161.6 
Mar-2030 209.6 196.3 171.0 145.7 132.4 
Apr-2030 124.1 116.2 101.2 86.3 78.4 
May-2030 59.2 55.5 48.3 41.2 37.4 
Jun-2030 9.9 9.2 8.0 6.9 6.2 
Jul-2030 0.6 0.5 0.5 0.4 0.4 

Aug-2030 0.2 0.2 0.1 0.1 0.1 
Sep-2030 1.2 1.1 1.0 0.8 0.8 
Oct-2030 22.9 21.5 18.7 16.0 14.5 
Nov-2030 125.3 117.3 102.2 87.1 79.1 
Dec-2030 299.3 280.3 244.2 208.1 189.1 
Jan-2031 291.8 273.1 237.8 202.4 183.8 
Feb-2031 254.6 238.4 207.6 176.7 160.5 
Mar-2031 208.7 195.4 170.1 144.8 131.5 
Apr-2031 123.6 115.7 100.7 85.7 77.9 
May-2031 59.0 55.2 48.1 40.9 37.2 
Jun-2031 9.8 9.2 8.0 6.8 6.2 
Jul-2031 0.6 0.5 0.5 0.4 0.4 

Aug-2031 0.2 0.2 0.1 0.1 0.1 
Sep-2031 1.2 1.1 1.0 0.8 0.8 
Oct-2031 22.9 21.4 18.6 15.9 14.4 
Nov-2031 124.7 116.8 101.7 86.6 78.6 
Dec-2031 298.0 279.0 242.9 206.8 187.8 
Jan-2032 290.5 271.9 236.5 201.2 182.6 
Feb-2032 253.6 237.3 206.5 175.6 159.4 
Mar-2032 207.8 194.5 169.2 143.9 130.6 
Apr-2032 123.0 115.1 100.2 85.2 77.3 
May-2032 58.7 55.0 47.8 40.7 36.9 
Jun-2032 9.8 9.1 8.0 6.8 6.1 
Jul-2032 0.6 0.5 0.5 0.4 0.4 

Aug-2032 0.2 0.2 0.1 0.1 0.1 
Sep-2032 1.2 1.1 1.0 0.8 0.8 
Oct-2032 22.8 21.3 18.5 15.8 14.3 
Nov-2032 124.2 116.2 101.1 86.0 78.1 
Dec-2032 296.7 277.7 241.6 205.5 186.5 
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V. Calculating the Peak-Day Design Temperature  
 

SDG&E’s 1-in-35 year Peak-Day design temperature of 43.6 degrees Fahrenheit, 
denoted “Deg-F,” is determined from a statistical analysis of observed annual minimum 
daily system average temperatures constructed from daily temperature recordings from 
the three U.S. Weather Bureau weather stations discussed above.  Since we have a time 
series of daily data by year, the following notation will be used for the remainder of this 
discussion: 
(1) AVGy,d = system average value of Temperature 

 for calendar year “y” and day “d”. 
 

The calendar year, y, can range from 1972 through 2024, while the day, d, can 
range from 1 to 365, for non-leap years, or from 1 to 366 for leap years.  The “upper” 
value for the day, d, thus depends on the calendar year, y, and will be denoted by 
n(y)=365, or 366, respectively, when y is a non-leap year or a leap year. 

For each calendar year, we calculate the following statistic from our series of 
daily system average temperatures defined in equation (1) above: 
 n(y) 

(2) MinAVGy = min{ AVGy,d }, for y=1972, 1973, …, 2024. 
 d=1 

(The notation used in equation 2 means “For a particular year, y, list all the daily values of 
system average temperature for that year, then pick the smallest one.”) 
The resulting minimum annual temperatures are shown in Table 7, below.  Most of the 
minimum temperatures occur in the months of December, January, or February; for a few 
calendar years the minimums occurred in March or November. 

The statistical methods we use to analyze this data employ software developed to 
fit three generic probability models:  the Generalized Extreme Value (GEV) model, the 
Double-Exponential or GUMBEL (EV1) model and a 2-Parameter Students’ T-
Distribution (T-Dist) model.   [The GEV and EV1 models have the same mathematical 
specification as those implemented in a DOS-based executable-only computer code that 
was developed by Richard L. Lehman and described in a paper published in the 
Proceedings of the Eighth Conference on Applied Climatology, January 17-22, 1993, 
Anaheim, California, pp. 270-273, by the American Meteorological Society, Boston, 
MA., with the title “Two Software Products for Extreme Value Analysis: System 
Overviews of ANYEX and DDEX.”  At the time he wrote the paper, Dr. Lehman was 
with the Climate Analysis Center, National Weather Service/NOAA in Washington, 
D.C., zip code 20233.]  The Statistical Analysis System (SAS) procedure for nonlinear 
statistical model estimation (PROC MODEL) was used to do the calculations.  Further, 
the calculation procedures were implemented to fit the probability models to observed 
maximums of data, like heating degrees.  By recognizing that:  
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 n(y) n(y) 

- MinAVGy = - min{AVGy,d} = max{ -AVGy,d}, for y=1972, …, 2024; 
  d=1 d=1 

this same software, when applied to the negative of the minimum temperature data, yields 
appropriate probability model estimation results. 

The calculations done to fit any one of the three probability models chooses the 
parameter values that provide the “best fit” of the parametric probability model’s 
calculated cumulative distribution function (CDF) to the empirical cumulative 
distribution function (ECDF).  Note that the ECDF is constructed based on the variable “-
MinAVGy” (which is a maximum over a set of negative temperatures) with values of the 
variable MinAVGy  that are the same as shown in Table 7, below.   

In Table 7, the data for -MinAVGy are shown after they have been sorted from 
“lowest” to “highest” value.  The ascending ordinal value is shown in the column labeled 
“RANK” and the empirical cumulative distribution function is calculated and shown in 
the next column.  The formula used to calculate this function is: 

ECDF = (RANK – α)/[MaxRANK + (1 – 2 α)], 
where the parameter “α” (shown as alpha in Table 8.1 and 8.2 ) is a “small” positive value 
(usually less than ½) that is used to bound the ECDF away from 0 and 1.   

Of the three probability models considered (GEV, EV1, and T_Dist) the results 
obtained for the T_Dist model were selected since the fit to the ECDF was better than 
that of either the GEV model or the EV1 model.  (Although convergence to stable 
parameter estimates is occasionally a problem with fitting a GEV model to the ECDF, the 
T_Dist model had no problems with convergence of the iterative procedure to estimate 
parameters.)   

The T_Dist model used here is a three-parameter probability model where the 
variable z = (-MinAVGy  - γ) / θ,  for each year, y, is presumed to follow a T_Dist with 
location parameter, γ, and scale parameter, θ, and a third parameter, ν, that represents the 
number of degrees of freedom.  For a given number of years of data, N, then ν=N-2.  

The following mathematical expression specifies the T_Dist model we fit to the 
data for “-MinAVGy “ shown in Table 7, below. 
(3) ECDF(-MinAVGy) = Prob { -T < -MinAVGy }= T_Dist{z; γ, θ, ν=N-2},  
where “T_Dist{ . }” is the cumulative probability distribution function for Student’s T-
Distribution3, and  

3 A common mathematical expression for Student’s T-Distribution is provided at 
http://en.wikipedia.org/wiki/Student%27s_t-distribution; with a probability density function 
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(4) z = (-MinAVGy  - γ) / θ,  for each year, y, and 
the parameters “γ” and “θ” are estimated for this model for given degrees of 

freedom ν=N-2.  The estimated values for γ and θ are shown in Table 8.1 and 8.2 along 
with the fitted values of the model CDF (the column: “Fitted” Model CDF). 
 Now, to calculate a peak-day design temperature, TPDDδ , with a specified 
likelihood, δ, that a value less than TPDDδ would be observed, we use the equation 
below: 
(5) δ = Prob { T < TPDDδ }, which is equivalent to 
(6) δ = Prob { [(-T - γ) / θ] > [(-TPDDδ - γ) / θ] }, = Prob { [(-T - γ) / θ] > [zδ] }, 
where  zδ = [(-TPDDδ - γ) / θ].  In terms of our probability model, 
(7) δ = 1 – T_Dist{ zδ; γ, θ, ν=N-2}, 
which yields the following equation for zδ, 
(7’) zδ = { TINV_Dist{ (1-δ); γ, θ, ν=N-2},   where “TINV_Dist{ . }” is the inverse 
function of the T_Dist{ . } function4. The implied equation for TPDDδ  is: 
(8) TPDDδ = - [γ + (zδ)(θ)]. 

To calculate the minimum daily (system average) temperature to define our 
extreme weather event, we specify that this COLDEST-Day be one where the 
temperature would be lower with a “1-in-35” likelihood.  This criterion translates into 
two equations to be solved based on equations (7) and (8) above: 
(9) solve for “zδ” from equation (7’) above with (1-δ) = (1 - 1/35) = 1 - 0.0286, 
(10) solve for “TPDDδ” from TPDDδ = - [γ + (zδ)(θ)]. 

The value of zδ = 1.947 and TPDDδ = - [γ + (zδ)(θ)] = 43.6 degrees Fahrenheit, 
with values for “ν=N-2”; along with “γ” and “θ” in Table 8.1 and 8.2 , below.   
SDG&E’s “1-in-10” peak-day design temperature of 45.0 degrees Fahrenheit, is 
calculated in a methodologically similar way as for the 43.6 degree “1-in-35” peak day 
temperature.  The criteria specified in equation (9) above for a “1-in-35” likelihood 
would be replaced by a “1-in-10” likelihood.   
(9’) solve for “zδ” from equation (7’) above with (1-δ) = (1 - 1/10) = 1 - 0.1000, 
which yields a “zδ” value of zδ = 1.299 and, TPDDδ = - [γ + (zδ)(θ)] = 45.0 with values 
for “ν=N-2”; along with “γ” and “θ” in Table 8.1 and 8.2 , below. 

such that T_Dist{z; γ, θ, ν=N-2}=∫f(t) dt, from t=-∞ to t=z.  Also, the notation Г(.) is known in 
mathematics as the GAMMA function; see http://www.wikipedia.org/wiki/Gamma_function for a 
description.  Also, see Statistical Theory, 3rd Ed., B.W. Lindgren, MacMillian Pub. Inc, 1976, pp. 336-337. 
4 Computer software packages such as SAS and EXCEL have implemented statistical and mathematical 
functions to readily calculate values for T_Dist{ . } and TINV_Dist{ . } as defined above. 
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A plot of the cumulative distribution function for MinAVGy  based on “ν=N-2”, 
the fitted model parameters, “γ” and “θ” with values in Table 8.1 and 8.2 , below, is 
shown in Figure 1.   
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Table 7 
YEAR MINAVG Month(MinAvg) 

1972 46.8333 Jan 
1973 46.3333 Jan 
1974 44.1667 Dec 
1975 44.3333 Jan 
1976 44.8333 Jan 
1977 50.8333 Mar 
1978 42.8333 Dec 
1979 45.1667 Jan 
1980 53.6667 Jan 
1981 49.6667 Jan 
1982 48.5000 Dec 
1983 50.8333 Jan 
1984 48.0000 Dec 
1985 45.5000 Dec 
1986 49.8333 Feb 
1987 41.3333 Dec 
1988 45.1667 Dec 
1989 45.0000 Jan 
1990 43.5000 Feb 
1991 48.3333 Mar 
1992 47.0000 Dec 
1993 46.8333 Jan 
1994 47.8333 Nov 
1995 51.1667 Dec 
1996 48.6667 Feb 
1997 48.8333 Dec 
1998 46.8333 Dec 
1999 48.6667 Jan 
2000 50.3333 Mar 
2001 47.5000 Jan 
2002 45.5000 Jan 
2003 49.0000 Dec 
2004 47.8333 Nov 
2005 48.0000 Jan 
2006 48.6667 Mar 
2007 43.1667 Jan 
2008 49.0000 Dec 
2009 48.5000 Feb 
2010 47.8333 Dec 
2011 48.8333 Dec 
2012 48.1667 Dec 
2013 44.1667 Jan 
2014 47.6667 Dec 
2015 47.6667 Jan 
2016 50.1667 Feb 
2017 51.0000 Jan 
2018 49.6667 Feb 
2019 48.1667 Feb 
2020 48.3333 Feb 
2021 47.8333 Dec 
2022 47.5000 Feb 
2023 48.0000 Mar 
2024 47.6667 Jan 
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Table 8.1 (alpha=0.375) 

 
 

Year -MinAvg 
Month( -
MinAvg) Rank 

Empirical 
CDF 

Model - 
 [(-MinAvg - γ)/θ] 

Model - 
Fitted CDF 

1980 -53.6667 Jan 1 0.0117 -2.5620 0.0067 
1995 -51.1667 Dec 2 0.0305 -1.5132 0.0682 
2017 -51.0000 Jan 3 0.0493 -1.4433 0.0775 
1977 -50.8333 Mar 4 0.0681 -1.3734 0.0878 
1983 -50.8333 Jan 5 0.0869 -1.3734 0.0878 
2000 -50.3333 Mar 6 0.1056 -1.1636 0.1250 
2016 -50.1667 Feb 7 0.1244 -1.0937 0.1396 
1986 -49.8333 Feb 8 0.1432 -0.9538 0.1723 
1981 -49.6667 Jan 9 0.1620 -0.8839 0.1904 
2018 -49.6667 Feb 10 0.1808 -0.8839 0.1904 
2003 -49.0000 Dec 11 0.1995 -0.6042 0.2742 
2008 -49.0000 Dec 12 0.2183 -0.6042 0.2742 
1997 -48.8333 Dec 13 0.2371 -0.5343 0.2977 
2011 -48.8333 Dec 14 0.2559 -0.5343 0.2977 
1996 -48.6667 Feb 15 0.2746 -0.4644 0.3222 
1999 -48.6667 Jan 16 0.2934 -0.4644 0.3222 
2006 -48.6667 Mar 17 0.3122 -0.4644 0.3222 
1982 -48.5000 Dec 18 0.3310 -0.3945 0.3474 
2009 -48.5000 Feb 19 0.3498 -0.3945 0.3474 
1991 -48.3333 Mar 20 0.3685 -0.3245 0.3734 
2020 -48.3333 Feb 21 0.3873 -0.3245 0.3734 
2012 -48.1667 Dec 22 0.4061 -0.2546 0.4000 
2019 -48.1667 Feb 23 0.4249 -0.2546 0.4000 
1984 -48.0000 Dec 24 0.4437 -0.1847 0.4271 
2005 -48.0000 Jan 25 0.4624 -0.1847 0.4271 
2023 -48.0000 Mar 26 0.4812 -0.1847 0.4271 
1994 -47.8333 Nov 27 0.5000 -0.1148 0.4545 
2004 -47.8333 Nov 28 0.5188 -0.1148 0.4545 
2010 -47.8333 Dec 29 0.5376 -0.1148 0.4545 
2021 -47.8333 Dec 30 0.5563 -0.1148 0.4545 
2014 -47.6667 Dec 31 0.5751 -0.0449 0.4822 
2015 -47.6667 Jan 32 0.5939 -0.0449 0.4822 
2024 -47.6667 Jan 33 0.6127 -0.0449 0.4822 
2001 -47.5000 Jan 34 0.6315 0.0251 0.5099 
2022 -47.5000 Feb 35 0.6502 0.0251 0.5099 
1992 -47.0000 Dec 36 0.6690 0.2348 0.5924 
1972 -46.8333 Jan 37 0.6878 0.3048 0.6191 
1993 -46.8333 Jan 38 0.7066 0.3048 0.6191 
1998 -46.8333 Dec 39 0.7254 0.3048 0.6191 
1973 -46.3333 Jan 40 0.7441 0.5145 0.6954 
1985 -45.5000 Dec 41 0.7629 0.8641 0.8042 
2002 -45.5000 Jan 42 0.7817 0.8641 0.8042 
1979 -45.1667 Jan 43 0.8005 1.0040 0.8399 
1988 -45.1667 Dec 44 0.8192 1.0040 0.8399 
1989 -45.0000 Jan 45 0.8380 1.0739 0.8560 
1976 -44.8333 Jan 46 0.8568 1.1438 0.8710 
1975 -44.3333 Jan 47 0.8756 1.3536 0.9091 
1974 -44.1667 Dec 48 0.8944 1.4235 0.9197 
2013 -44.1667 Jan 49 0.9131 1.4235 0.9197 
1990 -43.5000 Feb 50 0.9319 1.7032 0.9527 
2007 -43.1667 Jan 51 0.9507 1.8430 0.9644 

40Chapter 2: Weather Design



1978 -42.8333 Dec 52 0.9695 1.9829 0.9736 
1987 -41.3333 Dec 53 0.9883 2.6121 0.9941 

       
       

 
"Gamma" 

(Fitted) = -47.75     

 
"Theta" 

(Fitted) = 2.13     

 
Deg. 

Freedom= 51     
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Figure 1 
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VI. Estimating the Uncertainty in the Peak-Day Design Temperature 

 

The calculated peak-day design temperatures in section V above also have a 
statistical uncertainty associated with them.  The estimated measures of uncertainty 
recommended for our use are calculated from the fitted model for the probability 
distribution and are believed to be reasonable, although rough, approximations. 

The basic approach used the estimated parameters for the probability distribution 
(see the results provided in Table 8.1 and 8.2, above) to calculate the fitted temperatures 
as a function of the empirical CDF listed in Table 8.1 and 8.2.  These fitted temperatures 
are then “compared” with the observed temperatures by calculating the difference = 
“observed” – “fitted” values.  The full set of differences are then separated into the lower 
third (L), the middle third (M) and the upper third (U) of the distribution.  Finally, 
calculate values of the root-mean-square error (RMSE) of the differences in each third of 
the distribution, along with the entire set of differences overall.  The data in Table 9, 
below, show the temperature data and the resulting RMSE values. 

The formula below is used to calculate the RMSE for a specified set of “N” data 
differences: 

RMSE = SQRT{ (Σ e[ i ] 2  )/ (N-2)}, 
                                 i=1, ..., N 

where e[ i ] = observed less fitted value of  temperature, T[ i ].  The number of 
estimated parameters (3 for the GEV model, 2 for the T-Dist and EV1 models) is 
subtracted from the respective number of data differences, N, in the denominator of the 
RMSE expression. 

Since both the “1-in-35” and “1-in-10” peak-day temperature values are in the 
lower third quantile of the fitted distribution, the calculated standard error for these 
estimates is 0.79 Deg-F. 
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Table 9 

Quantile: (Lower, 
Middle, Upper 3rd's) 

Observed T[ i ] 
Temp. Ranked 

Fitted Value of T[ 

i ] 
Residual e[ i ]: Obs'd. less  

Fitted Value of T[ i ] Square of  e[ i ]:   
U 53.6667 52.7245 0.9421 0.8876   
U 51.1667 51.8305 -0.6639 0.4407   
U 51.0000 51.3345 -0.3345 0.1119   
U 50.8333 50.9765 -0.1431 0.0205   
U 50.8333 50.6902 0.1431 0.0205   
U 50.3333 50.4484 -0.1150 0.0132   
U 50.1667 50.2367 -0.0701 0.0049   
U 49.8333 50.0470 -0.2137 0.0457   
U 49.6667 49.8739 -0.2073 0.0430   
U 49.6667 49.7138 -0.0472 0.0022   
U 49.0000 49.5642 -0.5642 0.3183   
U 49.0000 49.4230 -0.4230 0.1789   
U 48.8333 49.2889 -0.4555 0.2075   
U 48.8333 49.1606 -0.3273 0.1071   
U 48.6667 49.0373 -0.3707 0.1374   
U 48.6667 48.9183 -0.2516 0.0633   
U 48.6667 48.8028 -0.1361 0.0185   
U 48.5000 48.6904 -0.1904 0.0362   
M 48.5000 48.5805 -0.0805 0.0065   
M 48.3333 48.4729 -0.1396 0.0195   
M 48.3333 48.3671 -0.0338 0.0011   
M 48.1667 48.2628 -0.0961 0.0092   
M 48.1667 48.1598 0.0069 0.0000   
M 48.0000 48.0577 -0.0577 0.0033   
M 48.0000 47.9563 0.0437 0.0019   
M 48.0000 47.8554 0.1446 0.0209   
M 47.8333 47.7547 0.0787 0.0062   
M 47.8333 47.6540 0.1793 0.0322   
M 47.8333 47.5531 0.2803 0.0785   
M 47.8333 47.4517 0.3816 0.1457   
M 47.6667 47.3496 0.3171 0.1005   
M 47.6667 47.2465 0.4201 0.1765   
M 47.6667 47.1423 0.5244 0.2750   
M 47.5000 47.0365 0.4635 0.2149   
M 47.5000 46.9288 0.5712 0.3262   
L 47.0000 46.8190 0.1810 0.0328   
L 46.8333 46.7066 0.1268 0.0161   
L 46.8333 46.5911 0.2422 0.0587   
L 46.8333 46.4720 0.3613 0.1305   
L 46.3333 46.3487 -0.0154 0.0002   
L 45.5000 46.2205 -0.7205 0.5191   
L 45.5000 46.0864 -0.5864 0.3438   
L 45.1667 45.9452 -0.7785 0.6061  
L 45.1667 45.7955 -0.6288 0.3954  
L 45.0000 45.6354 -0.6354 0.4038  
L 44.8333 45.4623 -0.6290 0.3956  
L 44.3333 45.2726 -0.9393 0.8822  
L 44.1667 45.0610 -0.8943 0.7998  
L 44.1667 44.8191 -0.6524 0.4257  
L 43.5000 44.5329 -1.0329 1.0668  
L 43.1667 44.1748 -1.0082 1.0164  
L 42.8333 43.6788 -0.8455 0.7149  
L 41.3333 42.7848 -1.4515 2.1068  
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   Overall RMSE (e[ i ]): 0.5238 °F 
   Upper 3rd RMSE (e[ i ]): 0.4075 °F 
  Middle 3rd RMSE (e[ i ]): 0.3075 °F 
  Lower 3rd RMSE (e[ i ]): 0.7872 °F 

 
 

VII. The Relationship between Annual Likelihoods for Peak-Day 
Temperatures and “Expected Return Time”  
 

The event whose probability distribution we’ve modeled is the likelihood that the 
minimum daily temperature over a calendar year is less than a specified value.  And, in 
particular, we’ve used this probability model to infer the value of a temperature, our 
peak-day design temperature (TPDDδ), that corresponds to a pre-defined likelihood, δ, 
that the observed minimum temperature is less than or equal to this design temperature.   
(1) δ = Prob{ Minimum Daily Temperature over the Year < TPDDδ }. 

For some applications, it is useful to think of how this specified likelihood (or 
“risk level” δ) relates to the expected number of years until this Peak-Day event would 
first occur.  This expected number of years is what is meant by the return period.  The 
results stated below are found in the book: Statistics of Extremes, E.J. Gumbel, 
Columbia University Press, 1958, on pages 21-25. 
(2) E[ #Yrs for Peak-Day Event to Occur ] =  1 / δ,  

1 / Prob{ Minimum Daily Temperature over the Year < TPDDδ }. 
For our peak-day design temperature (43.6°F) associated with a 1-in-35 annual 

likelihood, the return period is 35 years (δ=1/35).  For the 45.0°F peak-day design 
temperature, the return period is 10 years (δ=1/10).  Occasionally, a less precise 
terminology is used.  For example, the 43.6°F peak-day design temperature may be 
referred to as a “1-in-35 year cold day”; and the 45.0°F peak-day design temperature may 
be referred to as a “1-in-10 year cold day.” 

The probability model for the return period, as a random variable, is a geometric 
(discrete) distribution with positive integer values for the return period. The parameter δ 
= Prob{ Minimum Daily Temperature over the Year < TPDDδ }. 
(3) Prob{ return period = r } = (1 – δ) (r-1) δ, for r = 1, 2, 3, . . . 

The expected value of the return period is already given in (2) above; the variance 
of the return period is: 

(4) Var[ return period ] = (E[ return period ])2  x (1- (1 / E [ return period ])), 
(4’) Var[ return period ] = (E[ return period ]) x (E [ return period ] - 1). 

Equations (4) and (4’) indicate that the standard deviation (square root of the 
variance) of the return period is nearly equal to its expected value.  Thus, there is 
substantial variability about the expected value—a return period is not very precise.  
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